Somes-numbers of embeddings in function spaces with polynomial weights

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entropy and approximation numbers of embeddings of function spaces with Muckenhoupt weights, II. General weights.∗

We study compact embeddings for weighted spaces of Besov and TriebelLizorkin type where the weights belong to Muckenhoupt Ap classes. We focus our attention on the influence of singular points of the weights on the compactness of the embeddings as well as on the asymptotic behaviour of their entropy and approximation numbers.

متن کامل

On approximation numbers of Sobolev embeddings of weighted function spaces

We investigate asymptotic behaviour of approximation numbers of Sobolev embeddings between weighted function spaces of Sobolev–Hardy–Besov type with polynomials weights. The exact estimates are proved in almost all cases. © 2005 Elsevier Inc. All rights reserved.

متن کامل

Widths of embeddings in function spaces

We study the approximation, Gelfand and Kolmogorov numbers of embeddings in function spaces of Besov and Triebel-Lizorkin type. Our aim here is to provide sharp estimates in several cases left open in the literature and give a complete overview of the known results. We also add some historical remarks. AMS Classification: 41A45, 41A46, 46E35

متن کامل

‏‎interpersonal function of language in subtitling

‏‎translation as a comunicative process is always said to be associated with various aspects of meaning loss or gain. subtitling as a mode of translating, due to special discoursal and textual conditions imposed upon it, is believed to be an obvious case of this loss or gain. presenting the spoken sound track of a film in writing and synchronizing the perception of this text by the viewers with...

15 صفحه اول

Some limiting embeddings in weighted function spaces and related entropy numbers

The paper deals with weighted function spaces of type B p,q(R , w(x)) and F s p,q(R , w(x)), where w(x) is a weight function of at most polynomial growth. Of special interest are weight functions of type w(x) = (1 + |x|2)α/2 (log(2 + |x|))μ with α ≥ 0 and μ ∈ R. Our main result deals with estimates for the entropy numbers of compact embeddings between spaces of this type; more precisely, we may...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Complexity

سال: 2014

ISSN: 0885-064X

DOI: 10.1016/j.jco.2013.10.008